

Manual de Instruções

Fluxômetro PCE-TDS 75

O manual está disponível em vários idiomas (deutsch, français, taliano, español, português, nederlands, türk, polski, русский, 中 文).

Visite nosso site: www.pce-instruments.com

Última modificação: 12 de Novembro de 2021 v1.0

© PCE Instruments

1	C	Contenido	
2	h	nformação de segurança	1
3	E	Especificações	2
3.1	Е	specificações técnicas	2
3.2	С	Conteúdo de remessa	2
4	D	Descrição do sistema	3
4.1	D	Dispositivo	3
5	Ρ	Preparação	4
5.1	F	ïação	4
5.2	Li	igação	5
5.3	F	unções do teclado	5
6	h	nício rápido	ô
6.1	С	Configuração básica	6
7	h	nstalação dos sensores	3
7.1	S	eleção do ponto de medição	8
7.2	N 7.2	Aontagem dos sensores	9
	7.2	2.2 Selecão do método de medição	Ď
	7.2	2.3 Inspeção	1
	7.2	2.4 Advertências	2
8	C	Dperação13	3
8.1	С	Dperação normal1	3
8.2	V	/alor limite de fluxo mais baixo1	3
8.3	С	Configuração zero1	3
8.4	F	ator de escala14	4
8.5	В	loqueio do sistema14	4
8.6	S	aída do circuito de corrente14	4
8.7	S	aída de frequência14	4
8.8	S	aída de impulsos do totalizador1	5
8.9	Ρ	Programação de alarmes1	6
8.10) C	alibração de saída analógica 4-20 mA1	6
8.11	E	SN1	6

© PCE Instruments

9	Descri	ção das janelas do menu	17
9.1	Visão gei	ral do display	.17
9.2	Descrição	o da janela do menu	.18
10	Soluçã	o de problemas	34
10.1	Códigos	de erro durante a operação	.34
10.2	Pergunta	s frequentes	.35
11 seria	Apêndi al	ice – Uso e protocolo de comunicação de rede de interfa	ce 36
11.1	Resumo		.36
11.2	Definiçõe	s da interface de série	.36
11.3	Conexão	direta ao dispositivo principal via RS232	.37
11.4 1	Protocolo 1.4.1	os de comunicação e seu uso Protocolo HL	.37 37
1	1.4.2	Protocolo de comunicação MODBUS-I	39
12	Dados	de aplicação do fluxo	44
12.1	Velocidad	des do som para diferentes materiais comumente usados	.44
12.2	Velocidade do som na água (1 atm = 1 bar) em diferentes temperaturas45		
13	Garant	ia	46
14	Recicla	agem	46

2 Informação de segurança

Por favor, leia este manual de instruções com atenção e na íntegra antes de utilizar o dispositivo pela primeira vez. O dispositivo somente deve ser utilizado por pessoal qualificado. Os danos causados por inobservância nas advertências das instruções de uso não estão sujeitos a qualquer responsabilidade.

- Este dispositivo somente deve ser utilizado da maneira descrita no presente manual de instruções. Se usado para outros fins, poderia causar situações perigosas.
- Use o dispositivo somente se as condições ambientais (temperatura, umidade, etc.) estiverem dentro dos valores limite indicados nas especificações. Não exponha o dispositivo a temperaturas extremas, luz solar direta, umidade ambiente extrema ou áreas molhadas.
- Não exponha o dispositivo a choques ou vibrações fortes.
- A caixa do dispositivo só pode ser aberta por pessoal qualificado da PCE Instruments.
- Nunca use o dispositivo com as mãos úmidas ou molhadas.
- Não está permitido realizar modificações técnicas no dispositivo.
- O dispositivo deve ser limpo apenas com um pano humedecido. Não aplicar produtos de limpeza abrasivos ou à base de dissolventes.
- O dispositivo somente deve ser usado com acessórios ou peças de reposição equivalentes oferecidas pela PCE Instruments.
- Antes de cada uso, verifique se a caixa do dispositivo apresenta danos visíveis. Se apresentar algum dano visível, não use o dispositivo.
- O dispositivo não deve ser utilizado em atmosferas explosivas.
- A faixa de medição indicada nas especificações não deve ser excedida em nenhuma circunstância.
- O incumprimento das instruções de segurança pode causar danos ao dispositivo e lesões ao usuário.

Não aceitamos responsabilidades por erros de impressão ou erros de conteúdo deste manual. Referimo-nos expressamente às nossas condições gerais de garantia, que podem ser consultadas em nossas Condições Gerais.

Em caso de dúvidas, por favor, entre em contato com a PCE Ibérica S.L. Os detalhes de contato estão no final deste manual.

3.1 Especificações técnicas

Modelo	PCE-TDS 75
Faixa de medição	±0,03 ±5 m/s (±0,09 ±16 ft/s)
Precisão	±1 % do valor
Repetibilidade	0,2 %
Diâmetro da tubulação	25 1200 mm (1 48 ")
Saída analógica	0/4 20 mA (carga máxima 750 Ω)
Saída de impulsos	0 9999 Hz OCT
	(os limites de frequência são ajustáveis)
Saída relé	1 A com 125 VAC, 2 A com 30 VDC
	Frequência máxima 1 Hz
Interface	RS232 / RS485
Alimentação	10 36 VDC
Potência absorvida	1 A
Display	LCD, 256 x 128 pixels,
	com luz de fundo
Condições ambientais base	-40 60 °C (-40 140 °F),
	0 99 % R.H., sem condensação
Condições ambientais sensor	-40 80 °C (-40 176 °F),
	0 99 % R.H., sem condensação
Material da caixa	PC/ABS
Classe de proteção	IP 65
Proteção do sensor	IP 68
Comprimento do cabo	9 m, 30 ft
Dimensões	16 x 23 x 28 cm
Peso	3,2 kg

3.2 Conteúdo de remessa

- 1 Fluxômetro PCE-TDS 75
- 2 Sensor (comprimento do cabo 9 m)
- 2 Braçadeiras
- 1 Gel de contato por ultrassom
- 1 Kit de montagem na parede
- 1 Manual de instruções
- 1 Certificado de calibração de fábrica

4 Descrição do sistema

4.1 Dispositivo

Parte frontal

Parte inferior

- 1
- Display Teclado 2 3
- Sensor
- 4 Canais de fiação / Conexão de sensores

5.1 Fiação

Abra o dispositivo afrouxando os quatro parafusos da parte frontal para ter acesso às conexões da fonte de alimentação, sensores, etc. Em primeiro lugar, passe os cabos de alimentação através do prensa-cabos previsto para o efeito e estabeleça a alimentação através das conexões DC+ e DC-. Certifique-se que a polaridade está correta. Em seguida, conecte o sensor de entrada e o sensor de saída às conexões correspondentes. Para obter mais informações sobre as etiquetas de conexão, consulte a tabela abaixo. Ao conectar, certifique-se de que não há tensão.

Símbolo	Descrição
DC+	Corrente contínua DC 10 36 V+
DC-	Corrente contínua DC 10 36 V
	Aterramento
RL OUT+	Saída de relé
RL OUT-	
OCT OUT+	Saída OCT
OCT OUT	
GND	Sensor de direção de entrada terra (preto)
UP+	Sensor de direção de entrada + (marrom)
UP-	Sensor de direção de entrada - (azul)
GND	Sensor de direção de saída Terra (preto)
DN+	Sensor de direção de saída + (marrom)
DN-	Sensor de direção de saída – (azul)
I OUT+	Saída 4 20 mA
I OUT-	
ТХ	
RX	Saída RS232
GND	
A	Saída RS485
В	

Atenção!

Conecte o PCE-TDS 75 somente quando estiver desligado. A unidade deve ser aterrada de forma fiável antes da instalação e uso. Use uma fonte de alimentação AC ou DC. Não conectar os dois ao mesmo tempo.

5.2 Ligação

Assim que o PCE-TDS 75 for conectado a uma fonte de alimentação, o dispositivo é inicializado automaticamente e o sistema é executado automaticamente de acordo com os últimos parâmetros inseridos. Após que for exibido *R na esquina superior direita, a unidade começará a medir automaticamente.

Se este for o primeiro uso ou instalação em um novo local, será preciso inserir os parâmetros do novo local de instalação. Todos os parâmetros definidos pelo usuário são armazenados permanentemente até serem alterados. O fluxômetro continuará medindo de forma contínua, independentemente do menu que estiver aberto.

5.3 Funções do teclado

	Vírgula
C	Retornar / Retornar ao menu anterior
	Abrir o seguinte menu / Diminuir um número
	Retornar ao menu anterior / Aumentar um número
	Abrir um menu
	Confirmar / Editar

6.1 Configuração básica

Este exemplo supõe um tubo de PVC de 4 mm de espessura não revestido com um diâmetro de 200 mm. O meio que flui através do tubo é a água.

Esses parâmetros devem ser adotados da seguinte forma:

Etapa 1. Dimensões do tubo Abra M10 (menu 10) pressionando a tecla menu e insira o número 10. Agora insira o diâmetro e a espessura do tubo e confirme com a tecla Enter.

M10	Pipe settings	*R
Size	M.	
OD	200.0	mm
thk	4.0	mm

Etapa 2. Material do tubo

Pressione a tecla " \downarrow " – , para selecionar o material do tubo. Selecione a opção PVC e confirme com a tecla Enter.

M10	Pipe settings	*R
Size	M.	
M.	0.PVC	
Other	3200	m/s

Etapa 3. Temperatura da água

Abra M12 e insira a temperatura da água. A temperatura deve estar na faixa de 0 ... 80 °C. Pressione a tecla Enter, para confirmar sua seleção.

M12	Medium	*R
WTMP	20	(° C)

Etapa 4. Tipo de sensor

Abra M13 e selecione o tipo de sensor. Aqui, poderá selecionar aqui o primeiro tipo de sensor, por exemplo, Clamp-On-D. Confirme sua entrada com a tecla Enter.

M13	Ttransducer	*R
Туре	Method	Mode
Option	0.Clamp-On	

Etapa 5. Método de fixação

Pressione "↓", para ir ao seguinte submenu. Aqui, selecione por exemplo a opção 0.V. Pressione a tecla Enter, para confirmar sua seleção.

Ttransducer	*R
Method	Mode
0.V	
	Ttransducer Method 0.V

Etapa 6. Distância entre sensores Abra M14 e monte os sensores de acordo com a distância indicada e o método selecionado.

M14	INSTL Spacing	*R
Value	151.5	mm

Etapa 7. Exibir o valor medido Abra o menu 01 para visualizar o fluxo em m³/h.

M01	Flow Rate	*R
Flow	Vel.	
100.2		m³/h

Atenção!

Em geral, pressione a tecla Enter primeiro para alterar um parâmetro. Se após pressionar a tecla "Enter" ainda não for possível alterar, significa que o sistema está bloqueado por senha. Para desbloquear, selecione a opção "Desbloquear" na janela M54 e digite a senha criada anteriormente.

PCE

7 Instalação dos sensores

7.1 Seleção do ponto de medição

A instalação do PCE-TDS 75 é muito simples. É necessário apenas um ponto de medição adequado, fixar os sensores na tubulação e iniciar a medição. Na hora de escolher um ponto de instalação adequado, considere o seguinte:

- Selecione uma seção de tubo que esteja sempre cheia de líquido, por exemplo, um tubo vertical com fluxo para cima ou um tubo horizontal cheio.
- Deixe um comprimento suficiente de tubo reto, para instalar os sensores águas acima e águas abaixo.
- Em um tubo horizontal, os sensores devem ser montados lateralmente para evitar que bolhas ne ar na parte superior ou resíduos na parte inferior falsifiquem o resultado da medição.
- Certifique-se de que a temperatura do local de medição esteja abaixo dos limites de temperatura dos sensores.
- O interior do tubo também deve estar em boas condições. Se possível, escolha uma seção de tubo onde o interior esteja livre de corrosão
- A seção deve ser condutora de som.

90° Bend

Reduce

7.2 Montagem dos sensores

Certifique-se de que a superfície da tubulação onde os sensores serão montados esteja limpa e lisa. Também não deve haver oxidação ou tintas soltas. Selecione uma seção adequada e não esqueça de aplicar o gel de acoplamento. Aplique o gel de acoplamento no centro da superfície frontal de cada sensor e na superfície do tubo. Certifique-se de que não haja bolhas de ar entre os sensores e a parede da tubulação e, em seguida, conecte os sensores à tubulação usando as braçadeiras de tubulação fornecidas e aperte-as firmemente.

Observação:

Os dois sensores devem ser montados lateralmente, no centro dos tubos horizontais. Certifiquese de que a direção de montagem dos sensores seja paralela ao fluxo. Se os sensores não puderem ser montados horizontalmente simetricamente devido às condições locais limitadas de instalação, pode ser necessário montar os sensores em um ponto onde a tubulação esteja sempre cheia de líquido.

7.2.1 Distância entre os sensores

A distância entre as extremidades dos dois sensores pode ser consultada em M14 (menu 14). Depois de inserir os parâmetros necessários, verifique os dados exibidos na janela M14 e ajuste o espaçamento entre os sensores de acordo com os dados.

7.2.2 Seleção do método de medição

Existem dois métodos de montagem que podem ser usados dependendo do entorno de medição. O método de reflexão V (Reflect-Methode) e o método direito Z (Direkte Methode). O método V é fácil de instalar e adequado para a maioria dos entornos ultrassônicos, o método Z tem um sinal mais forte e funciona melhor em entornos de medição complicados.

Método V

O método V é considerado o método padrão. É prático de usar. No entanto, deve-se assegurar que a tubulação está montada corretamente (consultar 6.2 e seguintes).

Método Z

Se o diâmetro da tubulação for muito grande ou o revestimento for muito espesso, recomendase usar o método Z. O sinal transmitido após uma instalação do método Z tem menos atenuação do que um sinal transmitido usando o método V. Isso ocorre porque o método Z usa um sinal transmitido diretamente (em vez de refletido) que passa pelo meio apenas uma vez. O método Z permite medir em diâmetros de tubulações que variam de 100 a 5000 mm (4 ... 200 polegadas). Portanto, recomendamos o método Z para diâmetros de tubulação acima de 300 mm (12 polegadas).

7.2.3 Inspeção

Verifique se os sensores estão instalados corretamente e se há um sinal ultrassônico preciso e forte que garante o bom funcionamento e a alta fiabilidade dos sensores. Isso pode ser confirmado verificando a intensidade do sinal detectado, o tempo total de trânsito, o tempo delta e a relação de tempo de trânsito. As seguintes inspeções devem ser realizadas para garantir a alta fiabilidade da medição e operação de longo prazo do dispositivo.

Intensidade do sinal

A intensidade do sinal pode ser verificada na janela M04. Aqui, poderá ver a intensidade do sinal de ambos os sensores. A intensidade do sinal é indicada com números de 00,0 a 99,9. Onde 00,0 significa nenhum sinal detectado, e 99,9 significa máxima intensidade de sinal. Quanto mais forte for a intensidade do sinal detectado, mais tempo o dispositivo funcionará de forma fiável e mais estável será o valor medido obtido. Posicione os sensores de forma ideal e verifique se foi aplicado gel de acoplamento suficiente durante a instalação para obter a intensidade máxima do sinal. O sistema requer uma intensidade de sinal superior a 75,0 para ambos os sensores. Se a intensidade do sinal determinada for muito baixa, a posição dos sensores e o espaçamento devem ser reajustados, e a tubulação a inspecionada novamente. Também é possível alterar o método de montagem para corrigir esse problema.

Qualidade do sinal

A qualidade do sinal ou valor Q é exibida na janela M04. Indica o nível do sinal detectado. O valor Q é indicado por números de 00 a 99. Onde 00 representa o sinal mais fraco detectado, enquanto 99 representa o máximo. A posição dos sensores deve ser ajustada até que a qualidade do sinal detectado seja o mais forte possível.

Tempo total e tempo delta

O tempo total de trânsito e a diferença de tempo de trânsito total, que são exibidos na janela M04, são outros fatores para a precisão da medição. Os cálculos de medição no medidor de vazão são baseados nesses dois parâmetros. Portanto, se a diferença total do tempo de trânsito total variar muito, significa que a qualidade do sinal detectado é muito ruim. Isso pode ser resultado de más condições de instalação da tubulação, instalação inadequada dos sensores ou entrada incorreta de parâmetros. Em geral, a variação da diferença total do tempo de trânsito deve ser inferior a ±20 %. Somente se o diâmetro do tubo for muito pequeno ou a velocidade muito baixa, a variação pode ser maior.

Relação de tempo de trânsito

A relação do tempo de trânsito indica se a distância de montagem dos sensores é precisa. A relação normal de tempo de trânsito deve ser de 100 \pm 3 % quando instalado corretamente. Verifique isso na janela M04.

Se a relação do tempo de trânsito exceder 100 ±3 %, é necessário realizar uma verificação:

- Se os parâmetros (diâmetro externo do tubo, espessura da parede, material do tubo, revestimento, etc.) foram inseridos corretamente;
- Se a distância de montagem dos sensores corresponde à indicação na janela M14;
- Se os sensores estão colocados corretamente na tubulação,
- Se a forma da tubulação está distorcida ou deformada.

7.2.4 Advertências

Os parâmetros da tubulação devem ser inseridos com precisão, caso contrário, o fluxômetro não funcionará corretamente.

- Durante a instalação, aplique gel de acoplamento suficiente para montar os sensores na parede da tubulação. Enquanto verifica a intensidade do sinal e o valor Q, mova lentamente os sensores pelo local de montagem até que o sinal mais forte e o valor Q máximo sejam alcançados. Tenha em consideração que quanto maior o diâmetro da tubulação, mais os sensores precisam ser movidos.
- Verifique se a distância de montagem corresponde à indicação da janela M14 e se os sensores estão montados no centro da tubulação no mesmo tamanho de tubulação.
- Preste atenção especial às tubulações com juntas, pois essas tubulações geralmente são irregulares. Se a intensidade do sinal for sempre exibida como 0,00, significa que nenhum sinal foi detectado. Portanto, é necessário verificar se os parâmetros (incluindo todos os parâmetros da tubulação) foram inseridos corretamente. Verifique se o método de montagem do sensor está correto, se o tubo não está desgastado e o revestimento não é muito grosso. Certifique-se de que haja realmente líquido na tubulação ou que os sensores não estejam muito próximos de uma válvula ou coletor e que não haja muitas bolhas de ar no líquido, etc. Se ainda assim nenhum sinal for detectado, será preciso mudar de local de medição.
- Certifique-se de que o PCE-TDS 75 pode funcionar corretamente e com alta fiabilidade. Quanto mais forte for a intensidade do sinal exibida, maior será o valor Q alcançado. Quanto mais tempo o fluxômetro funcionar com precisão, maior será a

fiabilidade das taxas de vazão exibidas. Se houver interferências de ondas eletromagnéticas no ambiente ou o sinal detectado for muito fraco, o valor de vazão exibido não será fiável; consequentemente, um funcionamento fiável não é garantido nestas circunstâncias.

PCE

8 Operação

8.1 Operação normal

Quando a letra "*R" é exibida no display, significa que o sistema está funcionando normalmente. Quando a letra "D" é exibida, significa que o sistema está ajustando o ganho do sinal antes da medição. Isso também significa que o sistema está funcionando normalmente. A letra "E" indica que nenhum sinal foi detectado. Verifique se as conexões de fiação dos sensores estão corretas, instaladas firmemente, etc. Para obter mais informações, consulte o ponto "9".

8.2 Valor limite de fluxo mais baixo

O valor em M21 é o valor mínimo do fluxo. Se for inferior a esse valor, o fluxo exibido será redefinido como zero. Esta função pode impedir que o fluxômetro mostre o fluxo como "0" após uma bomba ter sido desligada, mas quando ainda houver movimento de líquido na tubulação, resultando em um erro cumulativo. Em geral, recomenda-se inserir 0,03 m/s como valor mínimo para o fluxo mais baixo. O valor limite não está relacionado aos resultados da medição, uma vez que a velocidade aumenta acima do valor limite.

8.3 Configuração zero

Assim que ocorre um fluxo zero, um ponto zero é exibido no medidor de fluxo, mas o valor medido exibido não é igual a "0", este valor indica apenas "Zero". Para qualquer instrumento de medição, aplica-se que quanto menor o ponto zero, melhor será a qualidade. Se o ponto zero for muito alto, significa que a qualidade do instrumento é ruim. Se o ponto de ajuste zero não estiver no fluxo zero real, pode ocorrer uma diferença de medição. Quanto menor a capacidade de medição física, maior a diferença de medição do ponto zero. É necessário realizar uma calibração zero para melhorar a precisão da medição em fluxo baixo. Isso pode ser feito no menu M22. Vá para o submenu "Cutoff" e selecione "Yes". O instrumento iniciará agora a calibração zero. O dispositivo indicará quando a calibração do zero estiver concluída.

© PCE Instruments 13

8.4 Fator de escala

O fator de escala descreve a relação entre o valor real e o valor lido "actual value" e "read value". Por exemplo, se a leitura for 2,00 e for indicada como 1,98 no dispositivo, o fator de escala será 2/1,98. Isso significa que o melhor fator de escala é uma constante 1. No entanto, é difícil manter o fator de escala "1" no instrumento, especialmente para medições em série. Durante a operação, continua existindo possíveis diferenças nos parâmetros das tubulações, etc. O fator de escala "scaling fator" pode ser necessário quando o PCE-TDS 75 é usado para tubulações diferentes. Portanto, a calibração do fator de escala está projetada especificamente para calibrar as diferenças resultantes da aplicação em diferentes tubulações. O fator de escala inserido deve ser aquele resultante da calibração de fluxo real. O fator de escala pode ser inserido na janela M26.

8.5 Bloqueio do sistema

O bloqueio do sistema destina-se a evitar erros de operação devido a manipulação por pessoal não autorizado. M54 é o menu de bloqueio do sistema, que somente pode ser desbloqueado com a senha que você definiu. Quando aparecer "Lock" no display, digite a senha correta. Não esqueça sua senha ou guarde-a em um lugar seguro, caso contrário, o dispositivo não poderá ser mais usado.

8.6 Saída do circuito de corrente

Com uma saída de circuito de corrente, o fluxômetro é programável e configurável com saídas como 4 - 20mA ou 0 - 20mA. Isso pode ser selecionado no menu 32. Se a faixa de vazão for, por exemplo, 0 ... 1000 m3/h, digite 0 para "Range" e "LowerL" e 1000 para "UpperL". Para "Mode", defina 4-20 mA. Se o fluxo estiver na faixa -1000 ... 2000 m3/h, selecione a saída 20 - 4 - 20 mA para "Mode". Insira 1000 para "Range" e "LowerL" e 2000 para "UpperL". Se a direção do fluxo for relevante, a saída 0 - 4 - 20 mA estará disponível. Quando a direção do fluxo for indicada como negativa, a saída de corrente está dentro da faixa de 0 - 4 mA, enquanto 4 - 20 mA é para a direção positiva. As opções para o modo de saída são exibidas na janela M32 em "Mode". A calibração e o teste do loop de corrente são realizados na janela M32 em "Check". Execute os passos conforme segue: "check 4mA", "check 8mA", "check 16mA", "check 20mA". Conecte um amperímetro para testar a saída do circuito de corrente e calcular a diferença. A calibração da saída 4-20mA é possível no menu M62.

8.7 Saída de frequência

O fluxômetro PCE-TDS 75 está equipado com uma função de transmissão com saída de frequência. A saída de alta ou baixa frequência exibida indica o valor de medição da taxa de fluxo alta ou baixa. O usuário pode definir a saída de frequência e a taxa de fluxo de acordo com seus requisitos. Por exemplo: Se a faixa de fluxo de uma tubulação for de 0 ... 5000 m3/h, a saída de frequência relativa necessária é de 100 ... 1000 Hz. A configuração é a seguinte:

- Na janela M33 "LowerL" (limite inferior da frequência de fluxo de saída) selecione "0";
- Para "UpperL" (limite superior da frequência de fluxo de saída), selecione "5000";
- Selecione "Mode-Frange" e insira "100" e "1000";
- Selecione "Mode-Option" e insira "a. Flow Rate";

PCB

Diagrama do cabeamento da saída OCT

OCT Output wiring diagram

8.8 Saída de impulsos do totalizador

Cada vez que o fluxômetro atinge um fluxo consistente, ele pode gerar um impulso totalizador. O impulso do totalizador pode ser transmitido para um contador remoto via OCT (Open Collector Transistor) transistor de coletor aberto ou um relé. Portanto, é necessário configurar a OCT e o relé de acordo (ver janelas M33 e M34). Por exemplo, se for necessário transmitir o pulso do totalizador positivo por meio de um relé e cada pulso representa um fluxo de 10 m3, configure da seguinte forma:

- Abra M41 selecione a unidade de fluxo totalizador "m³";
- Vá para M41-MULT e selecione o fator de escala "e. x10";
- Na opção M34 selecione "g. POS Total"

Atenção!

Certifique-se de selecionar um pulso de totalizador adequado. Se o pulso do totalizador for muito alto, o ciclo de saída será muito longo; se o pulso do totalizador for muito baixo, o relé operará muito rápido. O usuário pode encurtar a vida útil do relé e pular alguns pulsos. Recomenda-se que o totalizador transmita na faixa de 1 ... 3 pulsos por segundo.

8.9 Programação de alarmes

O alarme liga-desliga é gerado pela OCT ou por transmissão para um circuito externo através da abertura ou fechamento de um relé. O sinal de saída liga-desliga é ativado nas seguintes condições:

- Sinal não detectado.
- Sinal ruim detectado.
- O fluxômetro não está pronto para a medição normal.
- O fluxo está no sentido inverso (refluxo).
- As saídas analógicas excedem a faixa em 120 %.
- A saída de frequência excede a faixa em 120 %.
- O fluxo excede as faixas estabelecidas. Configure os intervalos de fluxo usando o sistema de alarme de software. Existem dois alarmes de software: Alarm Nº 1 e Alarm Nº 2. Exemplo 1: Se a vazão exceder 300 ... 1000 m³/h, siga estes passos para programar o alarme de saída do relé:
- (1) No menu 35, defina Alarm1 LowL para 300.
- (2) No menu 35, defina Alarm1 Upper para 1000.
- (3) No menu 34, selecione a opção d. Alarm1.

8.10 Calibração de saída analógica 4-20 mA

Atenção!

Cada fluxômetro foi calibrado antes de sair da fábrica. Não é necessário realizar esta etapa a menos que o valor da corrente (determinado durante a calibração do circuito de corrente) exibido na janela M32 não seja idêntico ao valor real da corrente de saída.

A janela de detecção de hardware deve ser ativada antes de calibrar a saída analógica. Para isso, proceda da seguinte forma:

Abra o M62 para calibração de 4-20 mA. Use as teclas "↑" e "↓" para alternar. Calibre a saída 4 mA do circuito de corrente. Use um amperímetro para medir a corrente de saída do circuito de corrente enquanto ajusta os valores numéricos até que o amperímetro indique 4,00. O valor de saída de 4 mA foi calibrado. Use as teclas "↑" e "↓"para comutar e calibrar a saída 20 mA do circuito de corrente. O método é o mesmo da calibração de 4 mA. Os resultados são salvos automaticamente na EEPROM e não são perdidos mesmo se o dispositivo for desligado.

8.11 ESN

Equipamos o fluxômetro com um número de série eletrônico único para identificar cada medidor de fluxo para o benefício do fabricante e dos clientes. O ESN, os tipos de dispositivos e versões podem ser visualizados na janela M50.

9 Descrição das janelas do menu

9.1 Visão geral do display

	Descrição breve Janela do menu		do menu
		M00	Totalizador de valores de fluxo
MOX	Evibir voloreo o condiçãos	M01	Fluxo
IVIUA	Exibit valores e condições	M04	Estado
		M10	Ajuste da tubulação
		M11	Parâmetros de revestimento da tubulação
M1X		M12	Parâmetros médios
	Ajuste de instalação	M13	Ajuste do sensor
		M14	Indicador de espaçamento do sensor
		M20	Amortecimento
		M21	Valor mínimo de corte de fluxo
		M22	Configuração zero
MOV	Aiusto do polibroção	M23	Contador
IVIZA	Ajuste de calibração	M25	Interruptor de correção de fechamento
		M26	Fator K
		M27	Correção
		M28	Análise estatística
		M30	Parâmetros da interface
		M31	Ajuste da entrada analógica
		M32	Ajuste do modo de loop de corrente
M3X	Ajustes de entrada e saída	M33	Ajuste OCT
		M34	Ajuste do relé
		M35	Ajuste do valor do alarme
MAY	Lipidado do fluxo	M40	Sistema de unidades de comutação
10147	Unidade de lidxo	M41	Unidade de fluxo
		M50	Número de série
		M51	Data e hora
M5Y	Configuração do sistema	M52	Tom de tecla
WOX	Conngulação do sistema	M53	Ajuste do idioma
		M54	Bloqueio do sistema
		M55	Reinicialização do sistema
		M60	Ajuste de data e hora
Mex	Outros	M61	Temporizador
MOX	Outros	M62	Ajuste de calibração
		M64	Ajuste de entrada analógica

9.2 Descrição da janela do menu

M00 Contador total de valores de fluxo Exibe o volume líquido

Exibe o valor positivo Exibe o valor negativo Use "↑" e "↓", para alternar entre os

submenus.

M00	Flow Total	*R
NET	POS	NEG
123.4		E+0
		m°

M00	Flow Total	*R
NET	POS	NEG
172 /		E+0
125.4		m³

M01

Fluxo

Exibe a taxa de fluxo e o fluxo absoluto. Exibe a velocidade. O fluxo e a velocidade mudam a cada 6 segundos. Pressione ENTER para pausar a alteração.

M01	Flow Rate	*R
100.2		m³
122 /		E+0
125.4		m³/h

M01	Flow Rate	*R
2.1		m/s
122.4		E+0
123.4		m³/h

M04 Estado

A intensidade de sinal na direção de entrada e a intensidade de sinal na direção de saída são exibidas. A qualidade do sinal Q é indicada como 00 ... 99. Onde, 00 representa o pior sinal, enquanto 99 representa o melhor sinal. Normalmente, o valor da qualidade do sinal Q deve ser superior a 60.

Visualização da velocidade do som do líquido medido. Normalmente, este valor deve ser aproximadamente igual ao valor inserido na janela M12. Se a diferença for muito grande, provavelmente é devido a um valor incorreto inserido na janela M12 ou instalação incorreta dos sensores.

Exibe o tempo de transmissão medido e o calculado. A diferença deve ser a menor possível. A proporção deve ser no máximo 100 ±3 %. Se a diferença for muito grande, verifique se os parâmetros foram inseridos corretamente, especialmente a velocidade do som do líquido.

Exibe o tempo médio ultrassônico medido (unidade: µs) e o tempo delta de alinhamento de entrada e o tempo de alinhamento de saída (unidade: ns). O cálculo da velocidade no fluxômetro é baseado nos dois valores medidos. O tempo delta é a melhor indicação para saber se a unidade está funcionando de forma estável. Normalmente, a variação do tempo delta deve ser inferior a 20 %. Se não for assim, verifique se os sensores estão instalados corretamente ou se os parâmetros foram inseridos corretamente.

M04	Status	*R
Signal	Sound	Time
Up	Dn	Q
80.0	80.1	85

M04	Status	*R
Signal	Sound	Time
Vel.	1482	E+0
Ratio	100%	m ³

M04	Status	*R
Signal	Sound	Time
Total	185.0	us
Delta	30.5	ns

PCE

M10

Ajuste das tubulações

Aqui poderá inserir o diâmetro externo da tubulação. O diâmetro externo da tubulação deve estar dentro da faixa de 10 a 1200 mm. **Nota:**

Insira o diâmetro externo do tubo ou a circunferência externa do tubo. Insira a espessura da parede da tubulação. A espessura da parede da tubulação é necessária.

Insira o material da tubulação.

Estão disponíveis as seguintes opções:

- 0. PVC
- 1. CS (aço carbono)
- 2. SSP (tubo de aço inoxidável)
- 3. CIP (tubo de ferro fundido)
- 4. DIP (tubo de ferro fundido dúctil)
- 5. Copper (cobre)
- 6. Alu. (alumínio)
- 7. ACP (tubo de cimento de amianto)
- 8. FPG (tubo de fibra de vidro)
- 9. Other (outros)

É possível inserir outros materiais não incluídos nos oito itens anteriores. Uma vez selecionado o item 9, deverá inserir a velocidade do som da tubulação correspondente.

M11

Revestimento

Insira a espessura do revestimento.

M10	Pipe settings	*R
Size	M.	
OD	108.0	mm
thk	4.0	mm

M10	Pipe settings	*R
Size	M.	
M.	0.PVC	
Other	3200	m/s

M11	Lining	*R
Size	M.	
thk	3.0	mm

Selecione o material de revestimento.

Estão disponíveis as seguintes opções:

- 0. Sem revestimento
- 1. Tar Epoxy (epóxi de alcatrão)
- 2. Rubber (borracha)
- 3. Mortar (argamassa)
- 4. PP Polypropylen (polipropileno)

M11	Lining	*R
Size	M.	
M.	0.No Liner	
Other	2400	m/s

- 5. Polystyrol (poliestireno)
- 6. PS Polystyrene (poliestireno)
- 7. Polyester (poliéster)
- 8. PE polyethylene (polietileno)
- 9. Ebonite (ebonite)
- 10. Teflon (teflon)
- 11. Other (outros)

No ponto 11, "Other" está disponível para inserir outros materiais não incluídos nos dez itens anteriores. Uma vez selecionada a opção "Other", a velocidade do som apropriada do revestimento deve ser inserida.

M12

Médio

Selecione a temperatura da água. As temperaturas devem estar entre 0 ... 80 °C.

Pressione ENTER para confirmar.

M12	Medium	*R
WTMP	20	(* C)

M13

Sensores

Aqui poderá selecionar o tipo de sensor.

Estão disponíveis as seguintes opções:

- 0. Clamp-On C
- 1. Clamp-On D
- 2. Clamp-On X
- 3. Plus-İn
- 4. Plus-In X

Aqui poderá selecionar o método de montagem do sensor.

Estão disponíveis dois métodos de montagem:

- 0. Método V (Reflect)
- 1. Método Z (Direct)

M13	Ttransducer	*R
Туре	Method	Mode
Option	0.Clamp-On C	

M13	Ttransducer	*R
Туре	Method	Mode
Option	0.V	

M14

Espaço de instalação

Este valor é calculado pelo PCE-TDS 75. O usuário deve montar os sensores de acordo com o espacamento do sensor exibido (certifique-se de que o espaçamento do sensor seja medido com precisão durante a instalação). O sistema exibirá automaticamente os dados após inserir o parâmetro da tubulação.

M20

Amortecimento

O fator de amortecimento varia de 1 a 999 segundos. Onde, 1 significa sem amortecimento; e 999 significa amortecimento máximo. A função de amortecimento estabiliza a exibição do fluxo. Normalmente, um fator de amortecimento de 3 a 10 é recomendado para as aplicações.

M21

Valor limite de fluxo mínimo

O corte de fluxo baixo é usado para fazer o sistema exibir O no fluxo mínimo. Por exemplo, se o valor mínimo for definido como 0,03, o sistema considerará como "0" todos os valores de fluxo medidos entre -0,03 e + 0,03. Em geral, recomendase um valor de 0,03 para a maioria das aplicações.

M22

Ajuste de zero

Quando o líquido está em estado estático, o valor exibido é denominado ponto zero. Se o ponto zero no fluxômetro não for zero, a diferença é adicionada aos valores reais do fluxo e são produzidas diferenças de medição no fluxômetro.

*R	INSTL Spacing	M14
mm	20.0	Value
mn	20.0	Value

6	
	6

M21	Low Vel. Cutoff	*R
Value	0.03	m/s

M22	Zero Settings	*R
Cutoff	Reset	Offset
Option	0.No	

O ponto zero deve ser definido após a instalação dos sensores e o fluxo na tubulação estar em condição estática absoluta (sem movimento de fluido na tubulação). Desta forma, o ponto zero resultante de diferentes localizações e parâmetros de montagem dos tubos pode ser eliminado. Isso aumenta a precisão da medição em baixo fluxo e elimina a discrepância de fluxo.

Selecione "Yes"; restabeleça o ponto zero estabelecido pelo usuário.

Este método não é usado com frequência. O ponto zero só deve ser ajustado quando todos os outros métodos não levam a uma solução. Insira manualmente o valor que deseja adicionar ao valor medido para obter o valor real.

Por exemplo:

Valor real medido =240 m³/h

Desvio de valor medido =250 m³/h Indicação do fluxômetro =250 m³/h Normalmente, o valor é definido como "0". Use "↑" e "↓" para alternar.

M23

Contador

Selecione o tipo de contador

- 0. POS (contador positivo)
- 1. NEG (contador negativo)

2. NET

Selecione o valor do totalizador de fluxo que deseja redefinir para 0.

- 0. POS (contador positivo)
- 1. NEG (contador negativo)
- 2. NET
- 3. All (todos)

M22	Zero Settings	*R
Cutoff	Reset	Offset
Option	0.No	

PCE

Zero Settings	*R
Reset	Offset
0.0	m³/h
	Zero Settings Reset 0.0

M23	Totalizer	*R
Switch	Reset	
Flow	0.POS	0.ON
M23	Totalizer	*R
Switch	Reset	

M25

Interruptor de compensação de desligamento

função de interruptor de А compensação de desligamento automático permite que o fluxo perdido em uma sessão fora de linha seia estimado ajustado е automaticamente. A estimativa é baseada na média da vazão antes da sessão fora de linha e no fluxo medido após a seguinte sessão em linha, multiplicado pelo tempo que o medidor esteve fora de linha. Selecione "ON", para usar esta função; selecione "OFF" para não esta função.

M26 Fator K

O fator de calibração é usado para modificar os resultados da medição. O usuário pode inserir um valor numérico (exceto "1") de acordo com os resultados reais da calibração.

M27

Correção

K-Array Correção de seção ON: Abrir a correção de seção OFF: Fechar correção de seção

Para o submenu "Delay", deverá usar as configurações de fábrica.

M25 PowerDown COMI		
Optio	0.ON	

M26	K Factor	*R
		1
Value	1.000	

M27	Correction	*R
KArray	Delay	TPC
Option	0.ON	
Value	******	
M27	Correction	*R
KArray	Delay	TPC
	0.0	

TPC

Controle de potência do transdutor. Use a configuração de fábrica.

0. Auto

1. Low

2. High

M28	
SQA	
Análise estatística	

M27	Correction	*R
KArray	Delay	TPC
Option	0.Aut	0

PCE

M28	SQA	*R
Set	Reset	
Option	0.0N/1.0FF	
Value	4.500	
M28	SQA	*R
Set	Reset	
Option	0.Auto	
Value	4.500	

M30 RS232/RS485

Configuração das interfaces seriais

- . 2400 None
- . 4800 None
- . 9600 None
- . 19200 None
- . 38400 None
- . 56000 None

A ordem pode ser estabelecida da seguinte forma:

- a. ັ 1-0 : 3-2
- b. 0-1:2-3
- c. 3-2:1-0
- d. 2-3:0-1

M30	RS232/RS485	*R
Set	Order	
Option	0.2400 None	
Adr	55	

M30	RS232/RS485	*R
Set	Order	
Option	a. 1-0:3-2	

M31 Ajuste de Al Exibe o valor analógico da entrada analógica Al1.

Exibe o valor analógico da entrada analógica AI2.

M31	AI Settings	*R
AI1	AI2	
LowerL	1.0	
UpperL	1000.0	
M31	AI Settings	*R
M31 Al1	AI Settings AI2	*R
M31 Al1 LowerL	Al Settings Al2 1.0	*R

M32 Ajuste de CL

Opções do modo de loop de corrente.

Selecione o valor da faixa CL.

Ajuste o valor de saída CL de acordo com o valor do fluxo em 4 mA ou 0 mA.

Ajuste o valor de saída CL de acordo com o valor do fluxo em 20 mA.

Opções de verificação de 4-20mA

- a. Check 4 mA (verificar 4 mA)
- b. Check 8 mA (verificar 8 mA)
- c. Check 12 mA (verificar 12 mA)
- d. Check 20 mA (verificar 20 mA)

M32	CL Settings	*R
Mode	Range	Check
Option	a.4-20mA	
M32	CL Settings	*R
Mode	Range	Check
LowerL	0.0	m³/h
UpperL	1000.0	m³/h
M32	CL Settings	*R
Mode	Range	Check
Option	a.Check 4mA	

M33 Ajuste de OCT

Estão disponíveis as seguintes opções de sinal:

a. Flow Rate b. POS Total c. NEG Total d. NET Total e. Energy Rate f. Heat Total g. Cool Total h. Rationing i. Uart CTRL

M33	OCT Settings	*R
Mode	Range	Check
Option	a.Flow Rate	
Frange	0-5000 Hz	

Selecione o valor para o intervalo OCT.

M33	OCT Settings	*R
Mode	Range	Check
LowerL	0.0	m³/h
UpperL	1000.0	m³/h
M33	OCT Settings	*R
M33 Mode	OCT Settings Range	*R Check
M33 Mode Option	OCT Settings Range a.Check 500	*R Check

Opções de verificação de OCT:

- a. Check 500
- b. Check 1000
- c. Check 3000
- d. Check 5000

M34 Configuração de relé

Estão disponíveis as seguintes opções de sinal:

- a. No Signal (Sem sinal)
- b. *E
- c. Reverse
- d. Alarm1
- e. Alarm2
- f. Ration
- g. POS Total
- h. NEG Total
- i. NET Total
- j. Not using (não usar)

M35

Configuração de alarme

Insira o valor de limite inferior de alarme; Qualquer fluxo medido inferior ao valor inferior definido ativará o alarme na OCT ou na saída de relé.

Insira o valor do alarme de limite superior; qualquer fluxo medido superior ao valor superior ativará o alarme na OCT ou na saída de relé.

M40

Unidade de comutação

Selecione a unidade de medida da seguinte forma:

a. Metric (métrica)

b. British (inglesa)

M34	Relay Settings	*R
Option	a.No Signal	

M35	Alarm Settings	*R
Alarm1	Alarm2	
LowerL	0.0	m³/h
UpperL	1000.0	m³/h
M35	Alarm Settings	*R
Alarm1	Alarm2	
LowerL	0.0	m³/h
UpperL	1000.0	m³/h
M40	Toggle Unit	*R
Option	a.Metric	

PCE

M41

Unidade de fluxo

Estão disponíveis as seguintes unidades de fluxo:

0. Cubic Meters (m³)

- 1. Liters (I)
- 2. USA Gallons (GAL)
- 3. Imperial Gallons (Imp gal)
- 4. Million Gallons (mg)
- 5. Cubic Feet (cf)
- 6. USA Barrels (US bbl)
- 7. Imperial Barrels (Imp bbl)
- 8. Oil barrels (barril de petróleo)

Estão disponíveis as seguintes unidades de tempo: /Day (dia) /Hour (hora) /Min (minuto) /Sec (segundo)

A configuração de fábrica é metros cúbicos/hora. Um fator de tempo diferente pode ser definido usando a seguinte tabela:

a. x 0.001 (E-3)	b. x 0.01(E-2)
c. x 0.1(E-1)	d. x 1(E+0)
e. x 10(E+1)	f. x 100(E+2)
g. x 1000(E+3)	h. x10000(E+4)

M42 Unidade de energia

As seguintes unidades de energia podem ser selecionadas:

M41	Flow Unit	*R
Unit	MULT.	
Rate	m3/h	
Total	m3	

M41	Flow Unit	*R
Unit	MULT.	
Option	d. *1	

M42	Energy Unit	*R
Unit	MULT.	
Rate	GJ/h	
Total	GJ	

0. Giga Joule (GJ)	1. Kilocalorie (Kc)
2. MBtu	3. KJ
4. Btu	5. KWh
6. MWh	7. TH

a. x 0.001 (E-3)	b. x 0.01(E-2)
c. x 0.1(E-1)	d. x 1(E+0)
e. x 10(E+1)	f. x 100(E+2)
g. x 1000(E+3)	h. x10000(E+4)

M42	Energy Unit	*R
Unit	MULT.	
Option	d. *1	

PCE

M43

Unidade de temperatura

a. °C

b. °F Use as teclas "↑" e "↓" para alterar a unidade.

M50

Aqui é exibido o número de série (S/N) do dispositivo. O S/N é único.

M43	TEMP Unit	*R
Option	a. °C	

M50	Serial Number	*R
S/N	FT888888)
SVN	V1.07	

M51

Hora e data

As alterações de data e hora são realizadas neste menu.

M51	Time/Data	*R
Tme	8:10:20	
Date	2017/8/16	

M52

Tom do teclado

Use este menu para ativar ou desativar o som das teclas ("ON" / "OFF").

M52	Key Ton	*R
Option	0.ON	

M53 Configuração de idioma Aqui poderá definir o idioma.

M53	Language	*R
Option	ption 0.English	

M54

Bloqueio do sistema

Aqui, terá a opção de bloquear o fluxômetro com uma senha. Uma vez que o sistema é bloqueado, qualquer alteração no sistema estará bloqueada, o parâmetro permanece legível. A introdução correta da senha estabelecida é a única forma de desbloquear o sistema. A senha é composta por 6 dígitos.

М	55	

Reiniciar sistema

Selecione 1. Restabeleça o dispositivo para as configurações de fábrica.

Selecione o menu da janela de inicialização.

M54	System Lock	*R
Option	a.Locked	
Кеу	*****	

M55	System Reset	*R
Option	0.No	
Menu	M00	

M60

Contador de dados

Estão disponíveis as seguintes opções:

- 0. Day (Dia)
- 1. Mon (Mês)
- 2. Year (Ano)

Nesta janela, é possível verificar a quantidade de registros de dados de fluxo de cada dia dos últimos 31 dias, de cada mês dos últimos 12 meses e de cada ano dos últimos 6 anos.

M60	Date Totalizer	*R
Day	Mon	Year
Value	08-01	E+0
	100.0	m3

Duração

Com esta função é possível visualizar o número total de dias de funcionamento desde que o fluxômetro saiu da fábrica.

M61	Running Time	*R
Value	5	Day

M62

Ajustar CL

Este menu é para a calibração de 4-20 mA. Digite a senha para ajustar.

M63

Calibração de RTD

Este menu é usado para a calibração do RTD. Digite a senha para ajustar.

M64

Ajuste de Al

Este menu é para a calibração da entrada analógica. Digite a senha para ajustar.

M62	CL Adjust	*R
4mA	Enter to go	
20mA	Enter to go	

M63	RTD Adjust	*R
0 ° C	Enter to go	
180°C	Enter to go	

M64	Al adjust	*R
Al1	AI2	
4mA	Enter to go	
20mA	Enter to go	

M64	AI adjust	*R
AI1	AI2	
4mA	Enter to go	
20mA	Enter to go	

10 Solução de problemas

O PCE-TDS 75 possui funções avançadas de autodiagnóstico e exibe todos os erros no canto superior direito do display LCD por meio de códigos únicos na ordem de data/hora. Os erros causados por operação inadequada, configuração incorreta e condições de medição inadequadas podem ser exibidos de acordo durante a operação. Esta função ajuda o usuário a detectar erros e encontrar as causas rapidamente. Dessa forma, os problemas podem ser resolvidos rapidamente de acordo com a tabela abaixo. Contudo, se não for possível solucionar o problema, entre em contato com a PCE Ibérica.

Código	Causas	Soluções
*R	O sistema funciona	
	normalmente.	
	 Sinal não detectado. A distância entre os 	- Coloque os sensores na tubulação e aperte-os firmemente com as braçadeiras. Aplique uma quantidade generosa de gel de acoplamento nos sensores e na parede da tubulação.
*E	sensores não está correta ou não foi aplicado gel de acoplamento suficiente aos sensores. - Os sensores não estão	- Elimine o óxido ou tintas soltas da superfície da tubulação. Limpe-a minuciosamente.
	instalados corretamente.	- Verifique os ajustes dos parâmetros inseridos.
	 A espessura da parede é muito grossa. 	 Selecione uma nova seção de tubulação. O instrumento pode funcionar corretamente em um novo local.
	- A espessura do revestimento da tubulação foi especificada incorretamente.	- Aguarde depois de configurar novamente os parâmetros. Normalmente, o dispositivo deveria funcionar normalmente depois.
*D	Se ajusta à medida.	

10.1	Códigos	de	erro	durante	а	operação
------	---------	----	------	---------	---	----------

10.2 Perguntas frequentes

Pergunta:

A tubulação nova e todos os requisitos de instalação são cumpridos: Por que ainda não é detectado nenhum sinal?

Resposta:

Verifique a configuração dos parâmetros da tubulação, o método de instalação e as conexões da fiação. Certifique-se de que foi aplicado gel de acoplamento suficiente, e que a tubulação está cheia de líquido, e a distância entre os sensores coincide com o valor indicado em M14 e que os sensores estão instalados na direção correta.

Pergunta:

Tubulação antiga com contaminação no interior, não detectou sinal ou o sinal é ruim: Como resolver o problema?

Resposta:

Verifique se a tubulação está cheia de líquido. Experimente o método Z para instalar os sensores. Selecione cuidadosamente uma boa seção da tubulação e limpe-a completamente, aplique gel de acoplamento suficiente em cada face do sensor e instale os sensores corretamente. Mova lenta e cuidadosamente cada sensor ao redor do ponto de instalação até alcançar o sinal máximo. Certifique-se de que o novo ponto de instalação não esteja contaminado dentro da tubulação e que a tubulação seja concêntrica (não distorcida) para que as ondas sonoras não sejam refletidas fora da área prevista.

Pergunta:

Porque a saída CL (Current Loop Mode) não é normal?

Resposta:

Verifique se o modo de saída está ajustado corretamente na janela M32 em "Mode". Verifique se os valores de corrente máximos e mínimos estão configurados corretamente na janela M32 em "Range". Recalibre o loop de corrente e verifique-o na janela M32 em "Check".

Pergunta:

Porque a taxa de fluxo ainda é exibida como zero, mesmo que haja obviamente líquido na tubulação e o símbolo "R" seja exibido no display?

Resposta:

Verifique se o "zero setting" foi realizado quando o fluxo não era zero (consulte a janela M22). Se for o caso, restaure a configuração de fábrica na janela M22-Reset.

11 Apêndice – Uso e protocolo de comunicação de rede de interface serial

11.1 Resumo

O fluxômetro possui um protocolo de comunicação. O dispositivo pode ser conectado a um RS-485 Modbus. Dois esquemas básicos podem ser selecionados para a conexão em rede, ou seja, o método de saída de corrente analógica apenas com o fluxômetro ou o método de comunicação RS232 via porta serial diretamente do fluxômetro.

Quando o método de comunicação da porta serial é usado diretamente para implementar um sistema de rede de monitoramento, o código de identificação do endereço do fluxômetro é usado como código de endereço da rede. Um conjunto de comandos ampliado com [W] é usado como protocolo de comunicação.

Para as conexões de transmissão de dados de curta distância, pode-se usar diretamente o RS-232 (comprimento do cabo 0 ... 15 m) ou RS-485 (comprimento do cabo 0 ... 1000 m). O loop de corrente pode ser usado para a transmissão de média ou longa distância.

Quando o fluxômetro é utilizado em ambiente de rede, várias operações podem ser realizadas por um dispositivo host, exceto a programação do código de identificação do endereço, que deve ser feita através do teclado do medidor de vazão.

A transmissão de dados utiliza o modo de resposta de comandos, ou seja, o dispositivo host emite comandos e o fluxômetro responde de acordo.

Atenção!

A comunicação serial RS232 e a comunicação RS485 não podem ser utilizadas simultaneamente com as funções disponíveis no protocolo de comunicação.

11.2 Definições da interface de série

Flowmeter - RS232:	3 TXD send
TXD send	PIN 4 ground
RXD receive	PIN 5 ground
GND ground	PIN PIN 6 empty
PC:	PIN 7 empty
PIN 1 empty	PIN 8 empty
PIN 2 RXD send	PIN 9 empty

PCE

11.3 Conexão direta ao dispositivo principal via RS232

11.4 Protocolos de comunicação e seu uso

O fluxômetro suporta estes três protocolos de comunicação: protocolo FUJI, protocolo MODBUS-C, protocolo MODBUS-I.

11.4.1 Protocolo HL

O dispositivo principal solicita que o fluxômetro responda enviando um comando. A taxa de transmissão de comunicação assíncrona (estação primária: sistema de computador; estação secundária: fluxômetro ultrassônico) é geralmente 9600 BPS. Um único byte tem o formato de dados (10 bits): um bit de início, um bit de parada e 8 bits de dados, bit de controle: nenhum. Uma cadeia caracteres de dados é usada para expressar comandos básicos e um retorno de carro (ENTER) é usado para expressar o fim de um comando. A característica é que a cadeia de dados é flexível. A sequência aplica-se tanto a RS232 quanto a RS485. Alguns comandos usados com frequência estão listados no gráfico a seguir.

Comandos de comunicação:

Comandos	Descrição	Formato dos dados	
RFR(cr)(lf)	Return instantaneous flow	±d.dddddE±dd(cr) Note1	
RVV(cr)(lf)	Return instantaneous velocity	±d.dddddE±dd(cr)	
RT+(cr)(lf)	Return positive accumulative flow	±ddddddddE±d(cr) Note 2	
RT-(cr)(lf)	Return negative accumulative flow	±dddddd.d±d(cr)	
RTN(cr)(lf)	Return net accumulative flow	±ddddddd.d±d(cr)	
RTH(cr)(lf)	Return net accumulative energy(hot)	±dddddd.d±d(cr)	
RTC(cr)(lf)	Return net accumulative energy(cold)	±dddddd.d±d(cr)	
RER(cr)(lf)	Return instantaneous energy value	±d.ddddddE±dd(cr)	
RA1(cr)(lf)	Return analog input value of Al1 (Temperature, Pressure, etc.)	±d.ddddddE±dd(cr)	
RA2(cr)(lf)	Return analog input value of Al2 (Temperature, Pressure, etc.)	±d.ddddddE±dd(cr)	
RID(cr)(lf)	Return Net address of the instrument	ddddd(cr) 5 bits in length	
RSS(cr)(lf)	Return signal intensity	UP:dd.d, DN:dd.d, Q=dd(cr)	
REC(cr)(lf)	Return current error code	*R/*D/*E Note 3	
RRS(cr)(lf)	Return Relay Status	ON/OFF(cr)	
RDT(cr)(lf)	Current date and time	yy-mm-dd, hh:mm:ss(cr)	
RSN(cr)(lf)	Return serial number	ddddddt(cr) Note 4	
SFQdddd.d(cr)(lf)	OCT setting	dddd.d(cr) Successful setting will back to "OK"	
SCLdd.d(cr)(lf)	Currentsetting	dd.d(cr) Successful setting will back to "OK"	
SRS(cr)(lf)	Start quantitative control	OK(cr) Successful setting will back to "OK"	
Р	Prefix of return command with check	Note 5	
W	Networking command prefix of numeric string address	Note 6	

Notas:

1. (cr) expressa o retorno de carro (ENTER). Seu valor ASCII é 0DH. (lf) expressa o avanço da linha. Seu valor ASCII é 0AH.

- 2. d expressa um número de 0 ... 9. O valor 0 é expresso como +0.000000E+00.
- 3. Não há ponto decimal na parte integral antes de E.
- 4. ddddddddd representa o número de série do dispositivo, t representa o modelo do dispositivo.

PCE

5. O caractere P pode ser adicionado antes de cada comando básico. Significa que os dados transmitidos possuem verificação CRC. O método de verificação consiste em somar novamente todos os dados que são cumulativos e binários, e obter os dados binários de 8 bits.

Por exemplo, a informação de retorno do RT (cr) (lf) é: +1234567E+0m3 (cr) (lf), (os dados relativos do sistema binário são: 2BH, 31H, 32H, 33H, 33H, 34H, 35H, 36H, 37H, 45H, 2BH, 30H, 6DH, 20H, 20H, 20H, 0DH, 0AH).

A soma de todos seus dados de retorno é =2BH+31H+32H+33H+34H+34H+35H+ 36H+37H+45H+2BH+30H+6DH+33H +20H=2F7, os dados baixos de 8 bits de seu binário é F7. Portanto, os dados da ordem PRT (cr) (lf) + 1234567E + 0m3!F7 (cr) (lf), "!" Para delimitadores, o caractere precedente é o caractere de soma, seguido por um código de verificação de 1 byte.

6. Uso do prefixo W: W + código de endereço de cadeia numérica + comando básico. O faixa de valores da cadeia numérica é 0 ... 255, exceto 13 (0DH retorno de carro), 10 (0AH avance de linha). Se a velocidade instantânea do fluxômetro nº 123 deve ser acessada, o comando W123DV (cr) (lf) pode ser emitido. O código binário correspondente é 57H, 31H, 32H, 33H, 44H, 56H, 0DH, 0AH; apenas o mesmo dispositivo com o mesmo endereço de Internet e comando retornará os dados.

7. Os comandos W e P podem ser usados em combinação, por exemplo, W123PRT +. Isso significa que o dispositivo que lê o endereço de rede é o valor cumulado do dispositivo com 123 e seus dados de retorno possuem oito acumulações e somas de verificação. "s" expressa ON ou OFF ou UD. Por exemplo, "TR:ON, RL:ON" expressa que a OCT e o relé estão ativados; "TR:UD, RL:UD" expressa que a OCT e o relé não estão acionados.

11.4.2 Protocolo de comunicação MODBUS-I

Este protocolo MODBUS-I usa o modo de transmissão RTU. O código de verificação usa CRC-16-IBM (o polinômio é X16+X15+X2+1, o caractere de blindagem é 0xA001), obtido pelo método de algoritmo de redundância cíclica. O modo MODBUS-I-RTU usa números hexadecimais para transmissão de dados.

1. Código de função e formato do protocolo MODBUS-I

O protocolo do fluxômetro suporta os dois códigos de função MODBUS a seguir:

Código de função	Dados de funcionamento
0x03	Read register (ler registro)
0x06	Write single register (escrever um único registro)

2. Uso do código de função 0x03 do protocolo MODBUS

O host envia o formato de quadro das informações de registro de leitura:

Slave Adresse (endereço escravo)	Operation Function Code (código de função de operação)	First Address Register (primeiro registro de endereço)	Register- Nummer (número de registro)	Verify Code (código de verificação)
1 Byte	1 Byte	2 Bytes	2 Bytes	2 Bytes
0x01 ~ 0xF7	0x03	0x0000 - 0xFFFF	0x0000 - 0x7D	CRC (Verify)

O escravo retorna o formato da estrutura de dados:

Slave Adresse	Read Operation Function Code	Number of Data Bytes	Data Bytes	Verify Code
1 Byte	1 Byte	1 Byte	N*x2 Byte	2 Bytes
0x01 - 0xF7	0x03	2xN*	N*x2 (Data)	CRC (Verify)

N*= Data register number (número de registro de dados)

3. Uso do código de função 0x06 do protocolo MODBUS

O host envia um comando para escrever um formato de quadro de informação de registro único (código de função 0x06):

Slave Adresse	Operation Function Code	Register Address	Register Data	Verify Code
1 Byte	1 Byte	2 Bytes	2 Bytes	2 Bytes
0x01 - 0xF7	0x06	0x0000 - 0xFFFF	0x0000 - 0xFFFF	CRC (Verify)

O escravo retorna o formato do quadro de dados (código de função 0x06):

Slave Adresse	Operation Function Code	Register Address	Register Data	Verify Code
1 Byte	1 Byte	2 Bytes	2 Bytes	2 Bytes
0x01 - 0xF7	0x06	0x0000 - 0xFFFF	0x0000 - 0xFFFF	CRC (Verify)

A faixa de endereços do fluxômetro é de 1 ... 247 (hexadecimal: 0x01 - 0xF7) e pode ser verificada no menu 46. Por exemplo, o número decimal "11" exibido no menu 46 significa que o endereço do fluxômetro no protocolo MODBUS é 0x0B.

O código de verificação CRC adota CRC-16-IBM (o polinômio é X16+X15+X2+1, o caractere de blindagem é 0xA001) obtido pelo método do algoritmo de redundância cíclica. O byte de ordem inferior do código de verificação está no início, enquanto o byte de ordem superior está no final. Por exemplo, para ler o endereço 1 (0x01) no modo RTU se o fluxo instantâneo utiliza a hora como unidade (m³/h), ou seja, lê os dados dos registros 40005 e 40006, o comando de leitura é o seguinte:

0x01	0x03	0x00 0x04	0x00 0x02	0x85 0xCA
Flowmeter	Function Code	First Address	Register	CRC Verify
Address		Register	Numbers	Code

Os dados retornados pelo fluxômetro são (assumindo que o fluxo real é = 1,234567 m³/h):

0x01	0x03	0x04	0x06 0x51	0x3F 0x9E0x3B
				0x32
Flowmeter	Funktions-Code	Data Bytes	Data	CRC Verify
Address		-	(1.2345678)	Code

Os quatro bytes 3F 9E 06 51 estão no formato IEEE754 em forma de ponto flutuante de precisão simples de 1.2345678.

Preste atenção à ordem de armazenamento de dados do exemplo anterior. Para explicar os dados na linguagem C, os ponteiros podem ser usados diretamente para inserir os dados necessários no endereço da variável correspondente, o byte inferior é colocado no início, como no exemplo anterior 1,2345678 m/s, 3F 9E 06 51 Dados salvos na ordem 51 06 9E 3F.

Exemplo: Se deseja converter o endereço 1 (0x01) para 2 (0x02), o registro 44100 deve ser programado como 0x02 da seguinte forma:

0x01	0x06	0x10 0x03	0x00 0x02	0xFC 0xCB
Flowmeter- Adress	Function Code	Register Adress	Register Number	CRF Verify Code

Os dados retornados pelo fluxômetro são:

0x01	0x06	0x10 0x03	0x00 0x02	0xFC 0xCB
Flowmeter- Adress	Function Code	Register Adress	Register Number	CRF Verify Code

4. Verificação de erros

O fluxômetro retorna apenas um código de erro 0x02, que significa que o primeiro endereço dos dados é incorreto.

Por exemplo, para ler o endereço 1 (0x01) dos dados de registro 40002 do fluxômetro no modo RTU, o fluxômetro considera esses dados como não válidos e envia o seguinte comando:

0x01	0x03	0x00 0x01	0x00 0x01	0xD5 0xCA
Flowmeter	Function Code	Register	Register	CRF Verify
Address		Address	Number	Code

O código de erro retornado pelo fluxômetro é:

0x01	0x83	0x02	0xC0 0xF1
Flowmeter	Error Code	Error Extended	CRF Verify
Address		Code	Code

5. Lista de endereços do registro MODBUS

O registrador MODBUS do fluxômetro possui um registro de leitura e outro de escritura.

PDU	Register	Read	Write	Type	No.
Address	40004			71	Registers*
\$0000	40001	Flow/s - low word	32 bits real	2	
\$0001	40002	Flow/s - high word			
\$0002	40003	Flow/m - low word	32 bits real	2	
\$0003	40004	Flow/m - high word			
\$0004	40005	Flow/h - low word	32 bits real	2	
\$0005	40006	Flow/h - high word		_	
\$0006	40007	Velocity - low word	32 bits real	2	
\$0007	40008	Velocity - high word	02 010 100	_	
\$0008	40009	Positive total - low word	32 bits real	2	
\$0009	40010	Positive total - high word	02 510 104	_	
\$000A	40011	Positive total - exponent	16 bits int	1	
\$000B	40012	Negative total - low word	32 bits real	2	
\$000C	40013	Negative total - high word	02 510 104	_	
\$000D	40014	Negative total - exponent	16 bits int	1	
\$000E	40015	Net total - low word	ow word 22 hits roal 2	2	
\$000F	40016	Net total - high word	52 513 104	2	
\$0010	40017	Net total - exponent	16 bits int 1		
\$0019	40026	Up signal - low word	32 hits real	2	0 - 00 0
\$001A	40027	Up signal - high word	52 Dits Teal	2	0 - 99.9
\$001B	40028	Down signal –low word	32 hits real	2	0 - 00 0
\$001C	40029	Down signal –high word	52 DIIS TEAL	2	0 - 55.5
\$001D	40030	Quality	16 bits int	1	0 - 99.9
\$001E	40031	Error code –char 1	String	1	Refer to "Error Analysis" for detailed codes meanings.
\$003B	40060	Flow velocity unit -char 1,2	Ctring	2	Only m/s
\$003C	40061	Flow velocity unit -char 3,4	Sung		right now
\$003D	40062	Flow rate unit –char 1,2	String	2	Note 1
\$003E	40063	Flow rate unit –char 3,4			
\$003F	40064	Flow totalunit –char 1,2	String	1	
\$0040	40065	Energy rateunit -char1,2	Ctring	0	Note 2
\$0041	40066	Energy rateunit -char 3,4	Sung	2	Note 2
\$0042	40067	Energy totalunit -char 1,2	String	1	
\$0043	40068	Instrument address-low word	22 hits roal	2	
\$0044	40069	Instrument address-high word	52 DILS TEAL	2	
\$0045	40070	Serial number –char 1,2	String	1	
\$0046	40071	Serial number –char 3,4	Sung	4	
\$0047	40072	Serial number –char 5,6	String	1	
\$0048	40073	Serial number –char 7,8	Sung	4	

a) Leitura da lista de endereços de registro (utiliza-se o código de função 0x03 para a leitura)

\$0049	40074	Analog Input AI1 Value-low word	22 hito rool	2	
\$004a	40075	Analog Input AI1 Value- high word	SZ DIIS TEAI	2	Returned temperature
\$004b	40076	Analog Input AI2 Value-low word	22 hito rool	2	value with RTD option
\$004c	40077	Analog Input AI2 Value- high word	SZ DIIS TEAI	2	
\$004d	40078	4-20mA Value-low word	22 hito rool	0	Linit, m A
\$004e	40079	4-20mA Value-high word	32 Dits real	2	Unit: mA

b) Single Write Register Address List (verwenden Sie 0x06-Leistungscode zum Schreiben)

PDU	Register	Beschreibung	Read/W rite	Туре	No.
Address	_	_			registers*
\$1003	44100	Flowmeter address (1 -255)	R/W	16 bits	1
				int.	
\$1004	44101	Communication Baud Rate	R/W	16 bits	1
		0 =2400, 1 = 4800,		int.	
		2 = 9600, 3 = 19200,			
		4 = 38400, 5 = 56000			

Nota:

- 1. Estão disponíveis as seguintes unidades de fluxo:
 - 0. "m3" Cubic Meter
 - 1. "I" Liters
 - 2. "ga" Gallons
 - 3. "ig" Imperial Gallons
 - 4. "mg" Million Gallons
 - 5. "cf" Cubic Feet
 - 6. "ba" US Barrels
 - 7. "ib" Imperial Barrels
 - 8. "ob" Oil Barrels

2. As seguintes unidades de energia estão disponíveis:

- 0. "GJ" Giga Joule
- 1. "Kc" -Kilocalorie
- 2. "MB" MBtu
- 3. "KJ" Kilojoule
- 4. "Bt" —Btu
- 5. "Ts" -- US Tonnes
- 6. "Tn" -US Tons
- 7. "kw" Kwh
- 3. 16 bits int—short integer, 32 bits int long integer, 32 bits real—floating point number, String—alphabetic string

PCE

12 Dados de aplicação do fluxo

12.1 Velocidades do som para diferentes materiais comumente usados

Material da tubulação	Velocidade
	(m/s)
Steel (aço)	3206
ABS	2286
Aluminium (alumínio)	3048
Glass (vidro)	3276
Polyethylene	1950
(polietileno)	
PVC	2540
Material de	Velocidade
revestimento	(m/s)
Teflon (teflon)	1225
Titanium (titânio)	3150
Cement (cimento)	4190

Brass (latão)	2270
Cast iron (ferro fundido)	2460
Bronze (bronze)	2270
Fiberglass epoxy (fibra de vidro epóxi)	3430
Bitumen (betume)	2540
Porcelain enamel (esmalte de porcelana)	2540
Glass (vidro)	5970
Plastic (plástico)	2280
Polyethylene (polietileno)	1600
PTFE	1450
Rubber (borracha)	1600

t(°C)	v(m/s)	t(°C)	v(m/s)	t(°C)	v(m/s)
	1402 3	34	1517.7	68	1554 3
1	1407 3	35	1519.7	69	1554 5
2	1412.2	36	1521 7	70	1554.7
3	1416.9	37	1523.5	70	1554.9
4	1421.6	38	1525.3	72	1555.0
5	1426.1	39	1527.1	73	1555.0
6	1430.5	40	1528.8	74	1555 1
7	1434.8	41	1530.4	75	1555 1
8	1439.1	42	1532.0	76	1555.0
9	1443.2	43	1533.5	77	1554.9
10	1447.2	44	1534.9	78	1554.8
11	1451.1	45	1536.3	79	1554.6
12	1454.9	46	1537.7	80	1554.4
13	1458.7	47	1538.9	81	1554.2
14	1462.3	48	1540.2	82	1553.9
15	1465.8	49	1541.3	83	1553.6
16	1469.3	50	1542.5	84	1553.2
17	1472.7	51	1543.5	85	1552.8
18	1476.0	52	1544.6	86	1552.4
19	1479,1	53	1545,5	87	1552,0
20	1482,3	54	1546,4	88	1551,5
21	1485,3	55	1547,3	89	1551,0
22	1488,2	56	1548,1	90	1550,4
23	1491,1	57	1548,9	91	1549,8
24	1493,9	58	1549,6	92	1549,2
25	1496,6	59	1550,3	93	1548,5
26	1499,2	60	1550,9	94	1547,5
27	1501,8	61	1551,5	95	1547,1
28	1504,3	62	1552,0	96	1546,3
29	1506,7	63	1552,5	97	1545,6
30	1509,0	64	1553,0	98	1544,7
31	1511,3	65	1553,4	99	1543,9
32	1513,5	66	1553,7		
33	1515,7	67	1554,0		

12.2 Velocidade do som na água (1 atm = 1 bar) em diferentes temperaturas

13 Garantia

Nossas condições de garantia são explicadas em nossos *Termos e Condições*, que podem ser encontrados aqui: <u>https://www.pce-instruments.com/portugues/impreso.</u>

14 Reciclagem

Por seus conteúdos tóxicos, as baterias não devem ser depositadas junto aos resíduos orgânicos ou domésticos. As mesmas devem ser levadas até os lugares adequados para a sua reciclagem.

Para cumprir a norma (devolução e eliminação de resíduos de aparelhos elétricos e eletrónicos) recuperamos todos nossos aparelhos do mercado. Os mesmos serão reciclados por nós ou serão eliminados segundo a lei por uma empresa de reciclagem.

Poderá enviar para:

PCE Ibérica SL. C/ Mayor 53, Bajo 02500 – Tobarra (Albacete) Espanha

Poderão entregar-nos o aparelho para proceder a reciclagem do mesmo corretamente. Podemos reutilizá-lo ou entregá-lo para uma empresa de reciclagem cumprindo assim com a normativa vigente.

EEE: PT100115 P&A: PT10036

Informação de contato da PCE Instruments

Alemanha

PCE Deutschland GmbH Im Langel 26 59872 Meschede Deutschland Tel.: +49 (0) 2903 976 99 0 Fax: +49 (0) 2903 976 99 29 info@pce-instruments.com www.pce-instruments.com/deutsch

Estados Unidos

PCE Americas Inc. 711 Commerce Way suite 8 Jupiter / Palm Beach 33458 FL USA Tel.: +1 (561) 320-9162 Fax: +1 (561) 320-9176 info@pce-americas.com www.pce-instruments.com/us

Países Baixos

PCE Brookhuis B.V. Institutenweg 15 7521 PH Enschede Nederland Tel.: +31 (0)53 737 01 92 info@pcebenelux.nl www.pce-instruments.com/dutch

França

PCE Instruments France EURL 23, rue de Strasbourg 67250 Soultz-Sous-Forêts France Tel. +33 (0) 972 35 37 17 Fax: +33 (0) 972 35 37 18 info@pce-france.fr www.pce-instruments.com/french

Reino Unido

PCE Instruments UK Ltd Unit 11 Southpoint Business Park Ensign Way, Southampton Hampshire United Kingdom, SO31 4RF Tel.: +44 (0) 2380 98703 0 Fax: +44 (0) 2380 98703 9 info@pce-instruments.co.uk www.pce-instruments.com/english

Turquia

PCE Teknik Cihazları Ltd.Şti. Halkalı Merkez Mah. Pehlivan Sok. No.6/C 34303 Küçükçekmece - İstanbul Türkiye Tel: 0212 471 11 47 Faks: 0212 705 53 93 info@pce-cihazlari.com.tr www.pce-instruments.com/turkish

Espanha

PCE Ibérica S.L. Calle Mayor, 53 02500 Tobarra (Albacete) España Tel.: +34 967 543 548 Fax: +34 967 543 542 info@pce-iberica.es www.pce-instruments.com/espanol

PCE

ltália

PCE Italia s.r.l. Via Pesciatina 878 / B-Interno 6 55010 Loc. Gragnano Capannori (Lucca) Italia Tel.: +39 0583 975 114 Fax: +39 0583 974 824 info@pce-italia.it www.pce-instruments.com/italiano

Dinamarca

PCE Instruments Denmark ApS Brik Centerpark 40 7400 Herning Denmark