

Termos técnicos

Veja abaixo um resumo dos termos técnicos mais utilizados, juntamente com sua definição.

Pressão absoluta

A pressão absoluta se refere à pressão zero no vácuo. Normalmente não é medida com muita frequência. Um exemplo de quando é necessário medi-la é em sistemas conectados. No entanto, em tais casos é necessário que os sensores de pressão tenham um encapsulamento especial.

Pressão absoluta

Normalmente, as medições de pressão são feitas em relação à pressão atmosférica. Se partimos da base de uma pressão atmosférica de 0 bar, todas as pressões superiores serão valores positivos. Neste caso, falamos de sobrepressão. Para uma pressão inferior à pressão atmosférica, os valores serão negativos e falaremos de uma depressão.

Valor inicial (Offset)

Ao ajustar um instrumento, o valor mais baixo da magnitude a ser medida é ajustado para um valor determinado. Esse valor é chamado valor inicial ou Offset.

Tempo de resposta

O espaço de tempo entre o início, o tempo de resposta e o tempo que necessita o sinal de saída para atingir e manter um regime permanente dentro de 1 % do campo de saída, é definido de acordo com DIN EN 61298 e DIN EN 60770 como tempo de resposta.

Valor final (Full Scale)

Define-se como valor final (inglês: full scale ou f.s. value) o valor mais alto da magnitude a ser medida na hora de realizar o ajuste de um instrumento para a medição.

Precisão

A precisão indica quão grande é o desvio entre o valor indicado e o valor real.

Curva característica

Uma curva característica descreve a conexão entre duas magnitudes físicas dependentes uma da outra que, em um caso ideal, possui uma linha paralela.

Desvio da curva característica

Um pequeno desvio da curva característica significa uma alta precisão na medição.

Histerese

A histerese é a tendência de um material de conservar uma de suas propriedades, na ausência do estímulo que a gerou. Podemos encontrar diferentes manifestações desse fenômeno. Por extensão, aplica-se a fenômenos que não dependem apenas das circunstâncias atuais, mas também de como chegaram a essas circunstâncias.

Desvio da linearidade

Por esta expressão entendemos o desvio máximo da curva característica de uma reta de referência sob um incremento de carga.

Reprodutibilidade

A reprodutibilidade define o grau em que, por exemplo, um instrumento de medição consegue fornecer resultados idênticos, sob as mesmas condições.

Erro de temperatura

A expressão "Erro de temperatura" indica o desvio máximo da curva característica do traçado ideal, levando em consideração que tal desvio ocorre sob diferentes condições de temperatura, mas dentro da faixa da compensação de temperatura.

Desvio de curva característica de acordo com o IEC 60770

De acordo com o IEC 60770 o desvio inteiro da curva característica, respectivamente o erro máximo total é composto por não linearidade, histerese e reprodutibilidade. Em outras palavras: este valor equivale ao desvio da reta com base em seu valor inicial (Offset) e seu valor final (Full scale).

Tipos de sensores

Sensores piezoelétricos

Com este tipo de sensor é possível medir diferentes parâmetros, como pressão, força, tensão, aceleração ou gases. Por exemplo, os sensores de pressão piezoelétricos integram uma membrana fina com dimensões definidas e uma base estável. Isso garante que os elementos carrequem a pressão em apenas uma direção. Nos acelerômetros piezoelétricos, os elementos são carregados por uma massa sísmica através de um movimento capturado por um sensor. Aplica-se a lei do movimento de Newton F = ma.

Sensores capacitivos

Os sensores capacitivos detectam os resultados sobre a base de uma mudança de capacidade de um condensador ou um sistema de condensador. Dois eletrodos formam a placa do condensador, que capturam a mudança de capacidade. Uma dessas placas ou eletrodos se move ou se deforma devido ao efeito que deve ser medido. Como resultado, a distância entre as placas varia, portanto, a capacidade.

Sensores dielétricos

Os sensores dielétricos medem as propriedades dielétricas (com pouca ou nenhuma condução elétrica) de um material sensitivo e são frequentemente usados no setor químico. Um revestimento de gás sensitivo altera suas propriedades dielétricas, assim como sua superfície sobre a base de uma reação com um determinado elemento (por exemplo, a adsorção de um elemento em uma película de isolamento fina). Este tipo de sensor integra adicionalmente um componente que converte as propriedades dielétricas em um sinal elétrico.

Full Scale Output (FSO)

Define-se como Full Scale Output (abreviação: FSO) a diferença algébrica entre o valor final (Full Scale) e o valor inicial (Offset).

Fatores de conversão comuns

1 mbar = 100 Pa 1 bar = 14.5 PSI1 PSI = 68,95 mbar1 N = 0,102 kp