

PCE Deutschland GmbH
Im Langel 4
D-59872 Meschede
Deutschland
Tel: 02903 976 99 0
Fax: 02903 976 99 29
info@pce-instruments.com
www.pce-instruments.com/deutsch

by

iPR-Serie

Prozess-Refraktometer

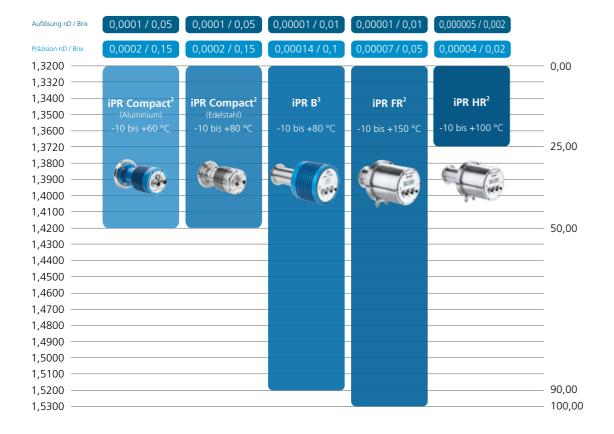
Ihr Blick in den Prozess

Permanente Überwachung und Steuerung von Konzentrationen in Flüssigkeiten direkt im Prozessstrom (inline)

Anwendungen

- Konzentrationsüberwachung
- Produktübergangskontrolle (Schneiden)
- Abweichungen eines Sollwertes (Qualitätskontrolle)
- Kristallisationsüberwachung (Lösen von Kristallen oder Pulver)
- Dosierungssteuerung
- Verunreinigungskontrolle

Mit mehr als 35 Jahren Erfahrung, einer ständigen Weiterentwicklung und Optimierung besonders im Hinblick auf die Anzahl der wachsenden Kundenapplikationen, ist SCHMIDT+HAENSCH marktführend.


Die iPR messen kontinuierlich und in Echtzeit den Brechungsindex und ermitteln damit die Konzentration von Flüssigkeiten bzw. die Mischungsverhältnisse von binären oder quasibinären Massenverhältnissen.

Die Messung ist unabhängig von Trübung, Farbe, Absorption oder Viskosität, wodurch höchste Präzision und bessere Prozesskontrolle gewährleistet wird.

Durch den Einsatz hochwertiger Materialien und die Einhaltung strenger Qualitätskriterien wird die höchste Zuverlässigkeit und Präzision der Prozessrefraktometer sichergestellt.

Technologische Vorteile der SCHMIDT+HAENSCH inline Refraktometer

- Extrem schnelle Messzeit von weniger als 1 Sekunde
- Messköpfe in kompaktem, robusten IP69K Gehäuse mit integrierter Auswerteelektronik
- Die Temperatur des Produktes wird im Saphirprisma in unmittelbarer Nähe zum Produktstrom gemessen und sichert die genaue Temperaturkorrektur
- (Temperaturkompensierte Skala für kundenspezifische Produkte)
- Die angegebenen Genauigkeiten sind für den gesamten Temperaturbereich gültig
- LED Lichtquelle (589nm) mit einer Lebensdauer bis 100.000 h (Aufgrund einer besonderen Technologie muss die LED über die gesamte Lebensdauer des iPR nicht kalibriert oder getauscht werden)
- Die iPR entsprechen den Vorschriften der Nahrungsmittel- und pharmazeutischen Industrie und sind für Prozesstemperaturen bis 150°C** geeignet
- Temperaturkompensation für Standardprodukte integriert (z.B. Brix, Oechsle, Glycol, H₂O₂) oder frei programmierbar für individuelle Produkte
- Einstellbare, digitale Grenzwertschalter (1 A)
- Zwei analoge Ausgänge 4 20 mA*
- Internes Trockenmittel erhöht die Gerätelebensdauer
- Elektronischer Feuchtigkeitssensor im Gerät
- Prozesseinbau über VariVent (Tuchenhagen), TriClamp, APV und Gehäuse für kleine Volumen
- Entwickelt und gefertigt "Made in Germany"
 - * Ausnahme iPR Compact

Anwendungen Inline Refraktometer

Nahrungs- und Getränkeindustrie

- Qualitätskontrolle von Schokolade, Kaffee, Joghurt, Sojamilch, Honig und weiteren Nahrungsmittelzusätzen
- Verdünnungs- und Verdampfungsprozesse in der Saft-, Marmeladen- und Ketchupindustrie
- Entalkoholisierung von Bier
- Bezahlsystem in der Weinproduktion
- Prozessmonitoring in der Pektinproduktion
- Überwachung von Kaffee- und Tee-Extraktionsprozessen
- CIP-Überwachung, Produktrückgewinnung und Produktübergangserkennung

Chemische, Petrochemische Industrie

- Bestimmung der Konzentration von Lösungsmitteln wie z.B. Schwefelsäure, Salzsäure, Phosphorsäure, Natronlauge, Alkali oder DMF/DMSO/DMAC in der Produktion von chemischen Fasern
- Konzentrationsmessung von Harnstoff als Kraftstoffzusatz
- Bestimmung der Konzentration von Ammoniak in der Düngemittel Produktion
- Produktübergangserkennung bei der Phasentrennung von Ölen

Zucker, Stärke, Süßungsmittel

- Brix-Messung während der Zuckergewinnung aus Zuckerrohr und Zuckerrübe, Stärke, Rohzuckerraffination und Melasse
- Überwachung der Kristallisationsprozesse
- Bestimmung der Verunreinigung in Kondensaten
- Konzentrationsmessungen von Stärke und Süßungsmitteln

Biotreibstoffe und Fermentationsprozesse

- Überwachung von Bio-Extraktions- und Fermentationsprozessen
- Konzentrationsmessungen von Kleber, Gelatine, Zitronensäure, Milchsäure, Lysin und weiteren biologischen Reagenzien

Pharmazeutische Industrie

- Überwachung von Extraktion, Mischen, Vorbereitung, Reinheitsbestimmung, Kristallisation und Auflösungen
- Monitoring chemischer Reaktionen und die Erkennung von Verunreinigungen
- Qualitätskontrolle fertiger Produkte
- Erfüllt die Anforderungen der Pharmacopoea

Papierindustrie

- Konzentrationsmessungen von modifizierter Stärke für das Grundieren in der Papierproduktion
- Rückgewinnung von Schwarzlauge sowie Online-Tests von Grünlauge

Tabakindustrie

- Überwachung von Waschbädern
- Konzentrationsbestimmung während der Extraktion von Wirkstoffen
- Überwachung von Kühlmitteln

Mikroelektronik Industrie

• Überwachung und Kontrolle des Reinheitsgrades sowie die Dosierung von Lösungsmitteln und verschiedenen Chemikalien (z.B. Säuren, Wasserstoffperoxid-Konzentrationen), die für Oberflächenbehandlungen und das Reinigen in der LCD-Display- und der Chip-Produktion verwendet werden

Maschinen- und Bergbau

- Konzentrationsüberwachung und Dosierung von Kühlschmierstoffen und Schneidölen
- Überwachung von Kühlmitteln

Energieerzeugung, Kraftwerke

- Wasserstoffperoxid-ÜberwachungKonzentration von Ammoniak während
- Konzentration von Ammoniak wanrend des Denitrationsprozesses

Kluge Köpfe mit Integrationsfähigkeit

Die iPR können als Einzellösung mit eigener Anzeige betrieben oder in ein übergeordnetes Prozessleitsystem integriert werden.

Mit Hilfe der digitalen Grenzwertschalter der iPR können Pumpen, Ventile und Signalisierungen verknüpft werden, die den Prozess in Echtzeit steuern. Damit kann eine Prozesskontrolle und einfache Automatisierung ohne ein Prozessleitsystem realisiert werden.

Die iPR können auch in Kombination mit einer Leitfähigkeits-, Trübungs-, CO_2 -, O_2 - oder pH-Messung zu einer intelligenten Sensor-Station ausgebaut werden.

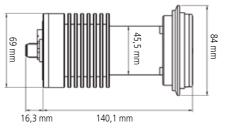
Die Messköpfe aus Edelstahl beinhalten ein Prisma aus künstlichem Saphir oder aus YAG, das mechanisch sehr stabil und chemisch beständig gegen Lösungsmittel, Säuren und Schlämme ist. Die Anforderungen der Lebensmittel- und Arzneimittelindustrie werden erfüllt und die iPR sind CIP- und Molchfähig.

Die iPR können in Rohrleitungen, Mischtanks, Reaktionskesseln, Vorratsbehältern, Kochapparaten oder Verdampfern unter Verwendung verschiedenster Flanschverbindungen eingebaut werden.

Bei dem bevorzugt eingesetzten Dichtungsmaterial handelt es sich um Viton, weitere sind auf Kundenanfrage möglich (z.B. Kalrez).

Um den Kontakt mit hochkonzentrierten Säuren oder anderen abrasiven Substanzen mit der Edelstahloberfläche des Geräts zu vermeiden, sind spezielle inline Gehäuse für unsere iPR verfügbar (alternative Werkstoffe wie PTFE oder HDPE).

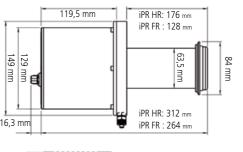
Der von SCHMIDT+HAENSCH favorisierte Prozessanschluss ist das VariVent-Inlinegehäuse. VariVent ist geeignet für Prozessdrücke bis 10 bar, ist totraumfrei und erlaubt den Einsatz von Molchen.

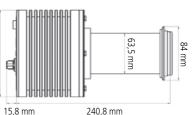

Das iPR ist auch als Ex-geschütztes Modell verfügbar. (ATEX Ex II 1G Ex ia IIC T4)

Wenn Substanzen im Prozess zur Belagsbildung auf dem Prisma führen, kann eine flüssigkeits-, bzw. heissdampfbasierte Reinigungseinheit verwendet werden. Für die Prozesse, die keine Flüssigkeitszufuhr erlauben, ist eine geschützte Ultraschall-Reinigung verfügbar

Technische Daten iPR-Serie

SPEZIFIKATIONEN	iPR Compact ²
Messbereich	1,3200 - 1,4209 nD / 0 - 50 Brix
Auflösung	0,0001 nD / 0,05 Brix
Präzision	± 0,0002 nD / ± 0,15 Brix
Brix Skala	Temperatur kompensiert
Prozesstemperatur	-10°C biso +60°C (Alu) oder bis +80°C (Edelstahl)
Prozesskontaktmaterial	YAG; Edelstahl, Optional: PTFE
Stromversorgung	24 V DC
Schnittstellen	1 Ausgang 4 - 20 mA 1 digitaler Grenzwertschalter (bis zu 1 A) 1 seriell RS232, alternativ RS485 oder USB
Abmessungen / Gewicht	150 x Ø 65 mm; ca. 1000 g
Highlights	Aluminium- oder Edelstahl Variante lieferbar




iPR GEMEI	NSAME	SPEZIFIKATIONEN
Nutzerskalen		4 Skalen temperaturkompensiert (z.B. Brix, Oechsle, H ₂ O ₂)
Prozessdruck		Max. 1 MPa (145 psi, 10 bar)
Lichtquelle		LED 589 nm
Stromversorgun	g	24 V DC
Schnittstellen		2 galvanisch getrennte 4 - 20 mA analoge Ausgänge 2 digitale Grenzwertschalter (bis zu 1 A) 1 seriell RS232, alternativ RS485 oder USB

SPEZIFIKATIONEN	iPR Basic³
Messbereich	1,3200 - 1,5200 nD / 0 - 90 Brix
Auflösung	0,00001 nD / 0,01 Brix
Präzision	± 0,00014 nD / ± 0,1 Brix
Prozesstemperatur	-10°C bis +90°C
Prozesskontaktmaterial	Saphir; Edelstahl, Optional: PTFE
Abmessungen / Gewicht	240,8 x Ø 136 mm; ca. 3790 g
Highlights	Allround Prozessrefraktometer

SPEZIFIKATIONEN	iPR FR² (Fullrange)
Messbereich	1,3200 - 1,5300 nD / 0 - 100 Brix
Auflösung	0,00001 nD / 0,01 Brix
Präzision	± 0,00007 nD / ± 0,05 Brix
Prozesstemperatur	-10°C bis +150°C
Prozesskontaktmaterial	YAG; Edelstahl, Optional: PTFE
Abmessungen / Gewicht	264 x Ø 149 mm; ca. 5300 g
Highlights	Allrounder in Edelstahl und für höhere Temperaturen Nutzerprogrammierbares Display, 2-zeilig

SPEZIFIKATIONEN	iPR HR ² (High Resolution)				
Messbereich	1,3200 - 1,3720 nD / 0 - 25 Brix				
Auflösung	0,000005 RI / 0,002 Brix				
Präzision	± 0,00004 RI / ± 0,02 Brix				
Prozesstemperatur	-10°C bis +100°C (mit Wasserkühlung)				
Prozesskontaktmaterial	YAG; Edelstahl, Optional: PTFE				
Abmessungen / Gewicht	312 x Ø 149 mm; ca. 5500 g				
Highlights	Für höchste Auflösung Nutzerprogrammierbares Display, 2-zeilig				

iPR Basic

iPR FR iPR HR

Montage-Zubehör zur Prozessintegration

Inline Gehäuse von SCHMIDT+HAENSCH sind ideal für den hygienischen Einbau der Prozessrefraktometer in Rohrleitungen oder

Das VariVent-Klemmsystem ermöglicht eine einfache Installation der iPR durch ein Steck- und Klemmverfahren. Dieser Formschluss bietet eine Druckfestigkeit bis zu 10 bar.

Eine sinnvolle Option für einige Prozesse ist die Installation einer Reinigungsdüse oder einer Ultraschallreinigung.

Zum Einbau in Rohrleitungen mit kleinem oder größerem Durchmesser als in der Tabelle angegeben, werden Bypässe oder Reduzierstücke verwendet.

Inline Gehäuse VariVent / Einschweissbar

Zum Einbau eines iPR in Rohrleitungen mittels Einschweissflansche

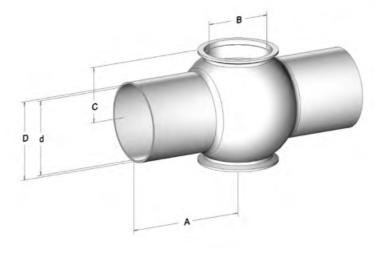
Außendurchmesser nach DIN 11850, Reihe II, DIN 11866, Reihe A

Nennweite d	Α	В	С	D	Bestell-Nr.
DN 40 DN 50 DN 65 DN 80 DN 100 DN 125	90 90 125 125 125 125	68 68 68 68 68	36 42 50 57,5 67 79,5	41 53 70 85 104 129	08211 07223 08628 08629 08631 08632

Zoll Außendurchmesser nach DIN ASME-BPE-a-2004, DIN 11866, Reihe C

Α	В	С	D	Bestell-Nr.
90	68	34,5	38,1	02796
90	68	40,75	50,8	02634
125	68	47	63,5	10993
125	68	53,5	76,2	01113
125	68	65,75	101,6	10995
	90 90 125 125	90 68 90 68 125 68 125 68	90 68 34,5 90 68 40,75 125 68 47 125 68 53,5	90 68 34,5 38,1 90 68 40,75 50,8 125 68 47 63,5 125 68 53,5 76,2

VariVent / Einschweissbar


Zum Einbau eines iPR in einen Kessel

Bestell-Nr. 07516 VariVent Gehäuseanschluss T

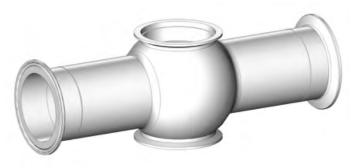
Inline Gehäuse für kleine Volumen

Zum Einbau eines iPR bei kleinem Volumen, mit Schlauch und Rohranschlüssen

Gehäusetyp	Bestell-Nr.
BE Edelstahl-Gehäuse	07284
BE PTFE-Gehäuse	09662
BV1 VariVent Edelstahl-Gehäuse, 1" Rohranschluss	01495
BV2 VariVent Edelstahl-Gehäuse, 1/2" Rohranschluss	10328

Inline Gehäuse VariVent / TriClamp Endstücke

Zum Einbau eines iPR in Rohleitungen mittels TriClamp


Metrisch

Außendurchmesser nach DIN 11850, Reihe II, DIN 11866, Reihe A

Nennweite d	В	С	D	Bestell-Nr.
DN 40 DN 50 DN 65 DN 80 DN 100 DN 125	68 68 68 68 68	36 42 50 57,5 67 79,5	41 53 70 85 104 129	11004 11005 11006 11007 11008 11009

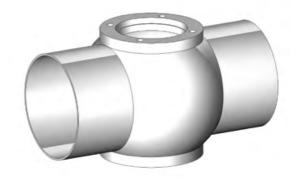
Außendurchmesser nach ASME-BPE-a-2004, DIN 11866, Reihe C

Nennweite d	В	С	D	Bestell-Nr.
1 1/2 2 2 1/2 3 4	68 68 68 68	34,5 40,75 47 53,5 65,75	38,1 50,8 63,5 76,2 101,6	11055 11056 11057 11058 11059

Inline Gehäuse APV / Einschweissbar

Zum Einbau eines iPR mittels Einschweissflansche

Metrisch


Außendurchmesser nach DIN 11850, Reihe II, DIN 11866, Reihe A

Nenny	weite d	Α	В	C	D	Bestell-Nr.
DN DN DN DN DN DN	125	68 67 72 85 98 111 130	26 38 50 66 81 100 125 150	29 41 53 70 85 104 129 154	25,5 31,5 37,5 45,5 53,0 62,5 75,0 87,5	02735 02490 01667 11060 02667 11009 11014 10996

Außendurchmesser nach ASME-BPE-a-2004, DIN 11866, Reihe C

Nennweite d	Α	В	С	D	Bestell-Nr.
1	68	22,9	25,4	24,0	03324
1 1/2"	67	35,1	38,1	30,0	11080
2"	72	47,8	50,8	36,4	11081
2 1/2"	85	60,3	63,5	42,5	11082
3"	90	72,9	76,1	48,5	01068
4"	111	97,6	101,6	61,3	11084

Reinigungssysteme für iPR Prisma

Flüssigkeits-Hochdruck oder Dampfreinigungssystem Bestell-Nr. 07140 Bestell-Nr. 08459 Ultraschall-Reinigungssystem

Flüssigkeits-Hochdruckreinigungssystem

Ultraschall-Reinigungssystem

90° Rohrinstallation mit Flüssigkeitshochdruck-Reinigungssystem

Einbau in geradem Rohr

Integration in ein automatisches System

Kesselinstallation

Einbau in geradem Rohr mit Ultraschall-Reinigungssystem